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ON THE ASSOCIATIVE HOMOTOPY LIE ALGEBRAS AND THE

WRONSKIANS

ARTHEMY V. KISELEV

Abstract. Representations of the Schlessinger–Stasheff’s associative homotopy Lie
algebras in the spaces of higher–order differential operators are analyzed. The W -
transformations of chiral embeddings, related with the Toda equations, of complex
curves into the Kähler manifolds are shown to be endowed with the homotopy Lie
algebra structures. Extensions of the Wronskian determinants that preserve the prop-
erties of the Schlessinger–Stasheff algebras are constructed for the case of n ≥ 1
independent variables.
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Introduction. Recently, the attention of the mathematical physics community has
been drawn to the N -ary Lie algebra structures, i.e., the N -linear skew–symmetric
brackets that satisfy an analog of the Jacobi identity, and to the N -field dynamics
problems, e.g., N -ary objects similar to the Poisson manifolds. There are several con-
cepts ([5, 7, 13, 20, 25, 26]) how the Jacobi identity should be generalized, each of them
having its own interpretation (e.g., [24]) and applications ([4]). Recently, a unifying
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2 ARTHEMY V. KISELEV

approach was proposed in [28], treating the known cases as the special ones within the
3-parameter family of the identities.

Up to our present knowledge, the papers [7, 26], issued in 1985, were the first works
on the topic. In [7], V. T. Filippov considered an N -linear skew–symmetric bracket ∇,
defined on a vector space A, that satisfied an analog of the Jacobi identity:
(I.1)

∇ (a1, . . . , aN−1,∇(b1, . . . , bN)) =
N∑

i=1

∇ (b1, . . . , bi−1,∇(a1, . . . , aN−1, bi), bi+1, . . . , bN) ,

where ai, bj ∈ A; then, A is called an N -Lie algebra. The motivation of (I.1) to
appear is quite understandable: the adjoint representation a 7→ ∇(a1, . . ., aN−1, a) is
a derivation for any ai ∈ A. The standard constructions of the Lie algebra theory for
the N -Lie algebras were introduced in [15].

The Nambu mechanics is an example of the N -Poisson dynamics assigned to identity
(I.1); in [24], the standard binary Poisson bracket was replaced by the ternary (N = 3)
one:

∇(f1, . . . , fN) = det

∥∥∥∥
∂fi

∂xj

∥∥∥∥ ,

where A = C∞(RN ) and the r.h.s. contains the Jacobi determinant; nevertheless, the
fact that Eq. (I.1) holds for this ∇ was not noticed until [25]. Then, L. Takhtajan ([27])
developed the concept of the Nambu–Poisson manifolds for N ≥ 2.

The second natural generalization of the ordinary Jacobi identity is

(I.2)
∑

σ∈SN
2N−1

(−1)σ∆(∆(aσ(1), . . . , aσ(N)), aσ(N+1), . . . , aσ(2N−1)) = 0,

where ai ∈ A and SN
2N−1 = {σ ∈ S2N−1 | σ(1) < · · · < σ(N), σ(N + 1) < · · · <

σ(2N − 1)} is the set of the unshuffle permutations. These brackets ∆ are named the
homotopy N -Lie algebra structures ([26]) and are closely related with the SH–algebras
([2, 20]). Also, these algebras and their Koszul cohomologies were studied in [13]; their
Hochschild cohomologies were considered in [23].

The N -Poisson manifolds associated with Jacobi’s identity (I.2) were introduced in

[1]: an N -vector field V is an N -Poisson structure if the equation [[V, V ]]S = 0 for the
Schouten bracket holds (see page 4 for definitions).

The properties of the Filippov’s N -Lie and the Schlessinger–Stasheff’s homotopy N -
Lie algebras are quite different; really, they appear in the 3-parametric scheme ([28]) as
the opposite cases: (N , N − 1, 0) and (N , 0, 0), respectively (see Definition 2 below).
Further discussion on the topic is found in [28].

In the sequel, we analyze the properties of associative homotopy Lie algebras and
their representations in higher order differential operators. Namely, we relate the cor-
responding structures with the Wronskian determinants, point out N -ary analogues
of vector fields on smooth manifolds, and construct a definition of the Wronskian for
n ≥ 1 independent variables which is correlated with the structures defined by Eq.
(I.2). Also, we prove that the W -transformations of the W -surfaces ([9]–[11]) in the
Kähler manifolds are endowed with the homotopy Lie algebra structures. We use the jet
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bundles language [3]; our approach is aimed to contribute the study of related aspects
in the cohomological algebra and the field theory. The exposition patterns upon [17,
Chapter V].

The paper is organized as follows.
In Section 1, we introduce the main algebraic concept of the homotopy N -Lie algebras.

We fix notation and define the Richardson–Nijenhuis bracket [[·, ·]]RN, the homotopy N -

Jacobi identities [[∆, ∆]]RN = 0 for N -linear skew–symmetric operators ∆, and the
Hochschild and Koszul cohomologies. Next, we illustrate the definitions by two finite–
dimensional homotopy Lie algebras which are analogues the Lie algebra sl2(k).

In Section 2, we consider representations of the homotopy Lie algebra structures in
the higher order differential operators over k. Analyzing the properties of the corre-
sponding N -linear skew–symmetric bracket, we point out higher–order generalizations
of vector fields and thus explain the property ∂~ı[∂~ı] = 0 of the Wronskian determinants
∂~ı = 1 ∧ ∂ ∧ · · · ∧ ∂N−1 to provide the homotopy Lie algebra structures for even Ns;
also, we calculate the structural constants of these algebras in terms of the Vander-
monde determinants. Next, we relate the multilinear homotopy structures with the
Toda equations ([21]). The latter are known to be the compatibility condition in the
W -geometry ([9]–[11]) of chiral embeddings of complex curves into the Kähler mani-
folds, while higher order differential operators, endowed with the homotopy Lie algebra
structures, are admissible deformations of these embeddings.

In Section 3, we construct analogues D~σ = Dσ1 ∧ · · · ∧ DσN
of the Wronskian de-

terminants ∂~ı for the case of n ≥ 1 independent variables x1, . . ., xn, such that the(
n+k

n

)
-Jacobi identities D~σ[D~σ] = 0 are preserved for any integers n, k ≥ 1.

1. Preliminaries: the algebraic concept

1.1. Basic definitions and facts. First let us introduce some notation. Let A be an
algebra over the field k such that char k = 0 and let ∂ be a derivation of A. As an
illustrative example, one can think A to be the algebra of smooth functions f : M → R

on a smooth real manifold M .
Let Sk

m ⊂ Sm be the unshuffle permutations such that σ(1) < σ(2) < · · · < σ(k) and

σ(k + 1) < σ(k + 2) < · · · < σ(m) for any σ ∈ Sk
m. Let ∆ ∈ Homk(

∧k A,A) be a
homomorphism and take arbitrary aj ∈ A, 1 ≤ j ≤ k; suppose 1 ≤ l ≤ k. The inner

product ∆a1,...,am
∈ Hom(

∧k−m A,A) is the operator defined by the rule

∆a1,...,am
(am+1, . . . , ak)

def
= ∆(a1, . . . , ak).

Definition 1 ([8, 28]). Let ∆ ∈ Hom(
∧k A,A) and ∇ ∈ Hom(

∧l A,A) be two opera-
tors; by definition, the exterior multiplication ∧ in Hom(

∧∗A,A) is

(∆ ∧ ∇)(a1, . . . , ak+l) =
∑

σ∈Sk
k+l

(−1)σ ∆(aσ(1), . . . , aσ(k)) · ∇(aσ(k+1), . . . , aσ(k+l))

for any a1, . . . , ak+l ∈ A.

Example 1. The exterior multiplication ∧ on the space of higher–order differential op-
erators that act on the algebra A = C∞(M) of smooth functions on M defines the
Wronskian determinants W 0,1,...,N+1 = ∂0 ∧ . . . ∧ ∂N+1. In this paper, we also consider
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generalized Wronskians W~ı = ∂i1 ∧ . . .∧ ∂iN ∈ Hom(
∧N A,A), where ∂ is a derivation

of A. Let a multiindex ~ı ∈ ZN
+ be such that 0 ≤ i1 < . . . < iN . By Homt(

∧N A,A) we
denote the linear span of the generalized Wronskians W~ı such that |~ı| ≡

∑
j ij = t. By

definition, put |W~ı| = |~ı|. In Section 3, we construct generalizations of the Wronskian
determinants for analytic functions k[[x1, . . . , xn]] by using Definition 1.

Next, let ∆ ∈ Hom(
∧k A,A) and ∇ ∈ Hom(

∧l A,A). By ∆[∇] ∈ Hom(
∧k+l−1 A,

A) we denote the action ∆[·] : Hom(
∧N A,A) → Hom(

∧N+k−1 A,A) of ∆ on ∇:

(1) ∆[∇](a1, . . . , ak+l−1)
def
=

∑

σ∈Sl
k+l−1

(−1)σ ∆(∇(aσ(1), . . . , aσ(l)), aσ(l+1), . . . , aσ(k+l−1)),

where aj ∈ A. By [[∆,∇]]RN ∈ Hom(
∧k+l−1 A,A) we denote the Richardson–Nijenhuis

bracket of ∆ and ∇:

(2) [[∆,∇]]RN def
= ∆[∇] − (−1)(k−1)(l−1)∇[∆].

Definition 2 ([28]). Choose integers N , k, and r such that 0 ≤ r ≤ k < N , and

let a1, . . . , ar, b1, . . . , bk ∈ A. The skew-symmetric map ∆ ∈ Hom(
∧N A,A) is said to

determine the Lie algebra structure of the type (N, k, r) on the k-vector space A if ∆
satisfies the (N, k, r)-Jacobi identity

(3) [[∆a1,...,ar
, ∆b1,...,bk

]]RN = 0

for any ~a and ~b. By Lie(N,k,r)(A) we denote the set of all type (N, k, r) structures

∆ ∈ Hom(
∧N A,A) on A.

The structure ∆ ∈ Hom(
∧N A,A) is called a multi-derivation if the Leibnitz rule

∆(ab, a2, . . . , aN) = a ∆(b, a2, . . . , aN ) + ∆(a, a2, . . . , aN) b

is valid for any a, b, aj ∈ A.

Example 2 (Filippov’s N -Lie algebras). Consider the family Lie(N,N−1,0) for integer
N ≥ 2. The N -Jacobi identity is (I.1), meaning that the adjoint representation for
these algebras is a derivation. This case is a natural generalisation of the Poisson
theory ([27]).

Remark 1 ([28]). We have

(4) Lie(N,0,0)(A) = Lie(N,1,0)(A)

for any even N ; this is a typical instance of the heredity structures. Indeed, the following
two conditions are equivalent:

[[∆, ∆]]RN = 0 ⇔ [[∆, ∆]]RN
a = −2 [[∆, ∆a]]

RN = 0 ∀a ∈ A,

owing to Corollary 1.1 in [28]:

[[∆, ∆]]RN
a = (−1)N−1[[∆, ∆a]]

RN + [[∆a, ∆]]RN.

Finally, [[∆, ∆a]]
RN = 0 for any a ∈ A.

Let ∆ ∈ Hom(
∧N A,A) be an N -linear skew-symmetric bracket: ∆(aΣ(1), . . .,

aΣ(N)) = (−1)Σ∆(a1, . . . , aN) for any rearrangement Σ ∈ SN .
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Definition 3. The algebra A is the homotopy N-Lie algebra, or the Schlessinger–

Stasheff N-algebra, if the N -Jacobi identity

(5) ∆[∆] = 0

holds.

In coordinates, the N -Jacobi identity is

(6)
∑

σ∈SN
2N−1

(−1)σ∆(∆(aσ(1), . . . , aσ(N)), aσ(N+1), . . . , aσ(2N−1)) = 0

for any aj ∈ A, 1 ≤ j ≤ 2N − 1. Generally, the number of summands in (6) is(
2N−1
N−1

)
=
(
2N−1

N

)
, see [18].

The Jacobi identity of the type (N, 0, 0) [[∆, ∆]]RN = 2∆[∆] = 0 implies Eq. (6) for
any even N . If N is odd, then the expression

(7) [[∆, ∆]]RN = 0

is trivial and we consider Eq. (5) separately from condition (3). In the sequel, we study

the Jacobi identity (6) of the form (5), where ∆ ∈ Hom(
∧N A, A).

1.2. The Hochschild and the Koszul cohomologies. The graded Jacobi iden-
tity for the Richardson–Nijenhuis bracket provides the Hochschild d∆-cohomologies on
Hom(

∧∗A, A) for ∆ ∈ Hom(
∧k A, A), where k is even:

Proposition 1 ([28]). The Richardson–Nijenhuis bracket satisfies the graded Jacobi

identity

(8) [[∆, [[∇, �]]RN]]
RN

= [[[[∆,∇]]RN, �]]
RN

+ (−1)(∆−1)(∇−1)[[∇, [[∆, �]]RN]]
RN

.

Corollary 2. Let k be an even natural number and an operator ∆ ∈ Hom(
∧k A, A)

be such that [[∆, ∆]]RN = 0; then the operator d∆ ≡ [[∆, ·]]RN is a differential: d2
∆ = 0.

The cohomologies w.r.t. the differential d∆ are called the Hochschild d∆-cohomologies
of the space Homk(

∧∗A, A).

Remark 2. The approach under study is closely related with the algebraic Hamiltonian
formalism in the geometry of partial differential equations ([3, 16]): a bi-vector A
endowes the space of the Hamiltonians with the Lie algebra structure iff its Schouten
bracket with itself satisfies the equation [[A, A]]S = 0; from the Jacobi identity similar

to Eq. (8) it follows that the operator dA = [[A, ·]]S is a differential and therefore defines
the Hamiltonian complex whose cohomologies are called the Poisson cohomologies. We
note that the operator W 0,1 = 1 ∧ d/dx, which is studied in Section 2.2, is the first
Hamiltonian structure for the Korteweg–de Vries equation.

Let the bracket ∆ ∈ Hom(
∧k A,A) satisfy the homotopy k-Jacobi identity ∆[∆] = 0.

By ∂∆ denote the linear map ∂∆ ∈ Hom(
∧r A,

∧r−k+1 A) such that

(1) ∂∆

∣∣∣∧r A
= 0 if r < k;

(2) ∂∆(a1 ∧ . . . ∧ ar) =
∑

σ∈Sk
r

(−1)σ∆[aσ(1), . . . , aσ(k)] ∧ aσ(k+1) ∧ . . . ∧ aσ(r) otherwise.
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We obtain the Koszul ∂∆-cohomologies for the algebra
∧∗A =

⊕∞
r=2

∧r A over the
algebra A owing to

Proposition 3 ([13]). The operator ∂∆ :
∧∗A →

∧∗A is a differential: ∂2
∆ = 0.

By H∗
∆(A) we denote the Koszul ∂∆-cohomologies w.r.t. the differential ∂∆. For

N = 2, the Koszul cohomologies of the Lie algebra of vector fields on the circumpherence
S1 were obtained in [8]. For N ≥ 2, the Koszul ∂∆-cohomologies of free algebras were
found in [13].

1.3. Examples of the homotopy Lie algebras. One should notice that algebraic
structures (5) have a remarkable geometric motivation to exist. Namely, we have

Example 3 ([13]). Let A = kr be a k-linear space of arbitrary dimension r and ∆:
∧N A →

A be a skew-symmetric linear mapping of A. If dimA < 2N − 1, then the identity (6)
holds for ∆.

Proof. We maximize the number of summands in (6) in order to note its skew-symmetry
w.r.t. the transpositions aj 7→ aΣ(j), Σ ∈ S2N−1. The l.h.s. of Jacobi identity (6) equals

(9)
1

N !(N − 1)!

∑

σ∈S2N−1

(−1)σ∆(∆(aσ(1), . . . , aσ(N)), aσ(N+1), . . . , aσ(2N−1)),

where all elements σ ∈ S2N−1 are taken into consideration; see [13, 23]. Expression (9)
is skew-symmetric w.r.t. any rearrangement Σ of the elements aj ∈ ~a:

(10) (−1)Σ
∑

σ∈S2N−1

(−1)σ∆(∆(a(σ◦Σ)(1), . . . , a(σ◦Σ)(N)), a(σ◦Σ)(N+1), . . . , a(σ◦Σ)(2N−1)) =

=
∑

σ∈S2N−1

(−1)σ∆(∆(aσ(1), . . . , aσ(N)), aσ(N+1), . . . , aσ(2N−1)).

Consequently, the l.h.s in (9) is skew-symmetric also and we obtain a (2N − 1)-linear
skew-symmetric operator acting on the vector space of smaller dimension. Hence, if
dimA < 2N − 1 = the number of arguments ♯~a, then (6) holds. �

• The case dimA1 = N + 1, [a0, . . . , âj, . . . , aN ] = (−1)j · aj is well-known to be the
cross-product in kN+1. For k = R and N = 2, we have the Lie algebra A ≃ so(3).
• We claim that the algebra A2 of dimension dimA2 = N +1, defined by the relations

(11) [a0, . . . , âj, . . . , aN ] = aN−j , 0 ≤ j ≤ N,

admits a representation in the space of polynomials kN [x] such that its structure [. . .]
is defined by the Wronskian determinants of scalar fields (smooth functions of one
argument). The algebra A2 is considered in the next subsection.

1.4. The polynomials. In this section, we construct finite-dimensional homotopy N -
Lie generalizations of the Lie algebra sl2(k). Our starting point is the following
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Example 4 ([18]). The polynomials k2[x] = {αx2 + βx + γ | α, β, γ ∈ k} of degree 2
form a Lie algebra isomorphic to sl2(k). The latter is generated by three elements 〈e,
h, f〉 that satisfy the relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Consider the basis 〈1, −2x, −x2〉 and choose the Wronskian determinant for the bracket
on k2[x]:

[−2x, 1] = 2, [−2x,−x2] = 2x2, [1,−x2] = −2x,

whence the representation ρ : sl2(k) → k2[x] is

ρ(e) = 1, ρ(h) = −2x, and ρ(f) = −x2.(12)

Consider the space kN [x] ∋ aj of polynomials aj of degree not greater than N ; on
this space, there is the N -linear skew-symmetric bracket

(13) [a1, . . . , aN ] = W (a1, . . . , aN) ,

where W denotes the Wronskian determinant. Since N -ary bracket (13) is N -linear, we
consider monomials const ·xk only. We choose {a0

j} = {xk} or {a0
j} = {xk/k!}, where

0 ≤ k ≤ N and 1 ≤ j ≤ 2N−1, for standard basis in kN [x]. The powers x0, . . ., xN and
n independent variables x1, . . ., xn introduced in Section 3 are never mixed, and the
notation is absolutely clear from the context. Exact choice of the basis depends on the
situation: the monomials xk are used to demonstrate the presence or absence of certain
degrees in N -linear bracket (13) and the monomials xk/k! are convenient in calculations
since they are closed w.r.t. the derivations (and the Wronskian determinants as well).
Indeed, we have

Theorem 4 ([19]). Let 0 ≤ k ≤ N ; then the relation

(14) W

(
1, . . . ,

x̂k

k!
, . . . ,

xN

N !

)
=

xN−k

(N − k)!

holds.

Proof. We have

(15) W

(
1, . . . ,

x̂k

k!
, . . . ,

xN

N !

)
= W

(
1, . . . ,

xk−1

(k − 1)!

)
· W

(
x, . . . ,

xN−k

(N − k)!

)
,

where the first factor in the r.h.s. of (15) equals 1 and has the degree 0. Denote the
second factor, the determinant of the (N − k) × (N − k) matrix, by Wm, m ≡ N − k.
We claim that Wm is a monomial: deg Wm = m, and prove this fact by induction on
m ≡ N − k. For m = 1, deg det(x) = 1 = m. Let m > 1; the decomposition of Wm

w.r.t. the last row gives

(16) Wm = W

(
x, . . .,

xm

m!

)
= x · W

(
x, . . .,

xm−1

(m − 1)!

)
− W

(
x, . . .,

xm−2

(m − 2)!
,
xm

m!

)
,

where the degree of the first Wronskian in r.h.s. of (16) is m − 1 by the inductive
assumption. Again, decompose the second Wronskian in r.h.s. of (16) w.r.t. the last
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row and proceed iteratively by using the induction hypothesis. We obtain the recurrence
relation

(17) Wm =
m−1∑

l=1

Wm−l · (−1)l+1xl

l!
− (−1)m xm

m!
, m ≥ 1,

whence deg Wm = m. We see that the initial Wronskian (15) is a monomial itself of
degree m = N − k with yet unknown coefficient.

Now we calculate the coefficient Wm(x)/xm ∈ k in the Wronskian determinant (15).
Consider the generating function

(18) f(x) ≡
∞∑

m=1

Wm(x)

such that

Wm(x) =
xm

m!

dmf

dxm
(0), 1 ≤ m ∈ N.

Recall that exp(x) ≡
∑∞

m=0 xm/m!; treating (18) as the formal sum of equations (17),
we have

f(x) = f(x) · (exp(−x) − 1) − exp(−x) + 1,

whence

(19) f(x) = exp(x) − 1.

Hence the required coefficient equals 1/m!. The proof is complete. �

We have shown that the polynomials kN [x] are closed w.r.t. the Wronskian deter-
minant, and we know that any N -linear skew-symmetric bracket ∆ on kN+1 satisfies
∆[∆] = 0. Therefore, the statement that the polynomials kN [x] of degree not greater
than N form the homotopy N -Lie algebra with N -linear skew-symmetric bracket (13)
for any integer N ≥ 2 is quite obvious. Nevertheless, in the sequel we show that the
Wronskian W 0,1,...,N−1 ∈ Hom(

∧N
kN [x], kN [x]) is the restriction of a nontrivial homo-

topy N -Lie bracket that lies in Hom(
∧N

k[[x]], k[[x]]). Also, the dimension n of the
base k ≡ k1 ∋ x equals 1. In Section 3, we generalize the concept to the case x ∈ kn,
where integer n ≥ 1 is arbitrary.

2. The associative homotopy Lie algebras

Another natural example of the homotopy Lie algebras is given by

Proposition 5 ([4, 13]). Let A be an associative algebra and let N be even; by defini-

tion, put1

(20) [a1, . . . , aN ]
def
=
∑

σ∈SN

(−1)σ · aσ(1) ◦ · · · ◦ aσ(N).

Then A is a homotopy Lie algebra w.r.t. this bracket.

1Note that the permutations σ ∈ SN provide the direct left action on
⊗

N
A, contrary to the inverse

action in [14, §II.2.6]. By definition, σ(j) is the index of the object in an initial ordered set placed
onto jth position after the left action of a permutation σ.
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Proof ([13]). The crucial idea is using (9) and (10). Let a1, . . ., a2N−1 lie in A and
σ ∈ S2N−1 be a permutation. In order to compute the coefficient of aσ(1) ◦ · · · ◦ aσ(2N−1)

in (6) and prove it to be trivial, it is enough to do that for α = a1 ◦ · · · ◦ a2N−1 in (6)
due to (10) and (9), successively.

Now we use the assumption N ≡ 0 mod 2. The product α is met N times in (6) in
the summands βj, 1 ≤ j ≤ N :

(21) βj = (−1)N(j−1) [[aj , . . . , aN+j−1], a1, . . . , aj−1, aN+j, . . . , a2N−1].

The coefficient of α in βj equals (−1)j−1 and hence the coefficient of α in (6) is

N∑

j=1

(−1)j−1 = 0.

The proof is complete. �

From the proof of Proposition 5 we see that the main obstacle for bracket (20) to
provide the homotopy Lie algebra structures for odd Ns are the signs within (1), (20),
and in the Richardson–Nijenhuis bracket (2) that defines the Jacobi identity as the
cohomological conditions d2

∆ = 0, see Proposition 1. Namely, we have

Proposition 6 ([4]). Let the subscript i at the bracket’s (20) symbol ∆i denote its

number of arguments: ∆i ∈ Homk(
∧i A,A), and let k and ℓ be arbitrary integers.

Then the following identities hold :

∆2k[∆2ℓ] = 0,(22a)

∆2k+1[∆2ℓ] = ∆2k+2ℓ,(22b)

∆k[∆2ℓ+1] = k · ∆2ℓ+k.(22c)

Proof. The proof of (22a) repeats the reasoning in (21) literally. For (22b), we note that
the last summand β2k+1 is not compensated. For (22c), the summand α = a1◦· · ·◦a2ℓ+k

acquires the coefficient
k∑

j=1

(−1)(2ℓ+1)(j−1) · (−1)j−1 = k.

This completes the proof. �

2.1. On representations in differential operators. In this section, the field k is
the complex field C: k = C, and z is the holomorphic coordinate in C.

By O(C) we denote the algebra of the Laurent series over C. Consider the associative
algebra Diff∗(O(C),O(C)) of holomorphic differential operators

(23) ∇~w =

p∑

j=0

wj(z) · ∂j .

We claim that for any p the algebra Diff∗(O(C),O(C)) is a homotopy Lie algebra that
contains a homotopy 2p-Lie subalgebra defined by a skew–symmetric bracket of 2p
arguments. Recall that for N = 2 vector fields compose a subalgebra in the space of
differential operators of arbitrary orders.
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Let aj ∈ Diff∗(C) be aj = wj(z) ∂kj for 1 ≤ j ≤ N . Similar to (20), put

(24) [w1 · ∂
k1 , . . . , wN · ∂kN ]

def
=
∑

σ∈SN

(−1)σ wσ(1) ∂kσ(1) ◦ · · · ◦ wσ(N) · ∂
kσ(N) .

This bracket is N -linear over C and is skew-symmetric w.r.t. permutations of its argu-
ments.

First, we count derivatives: Consider the special case kj ≡ p = const for all j and
solve the equation

(25) Np =
N(N − 1)

2
+ p

for p: p = N/2; note that N(N − 1)/2 = |W 0,1,...,N−1|.
Further on, we restrict ourselves to the case N ≡ 0 mod 2; it turns out that for odd

Ns we need to consider half-integer powers of the derivation ∂: ∂0, ∂1/2, ∂, ∂3/2, . . ..

Theorem 7. Let N be even and wj ∈ O(C) for 0 ≤ j ≤ N ; put p = N/2. Then we

have

[w1 ∂p, . . . , wN ∂p] = W 0,1,...,N−1(w1, . . . , wN) · ∂p,

where W 0,1,...,N−1 = 1 ∧ ∂ ∧ . . . ∧ ∂N−1 is the Wronskian determinant.

Proof. Permutations of arguments in the r.h.s. of (24) are reduced to permutations of
wjs since kj ≡ p. Let σ ∈ SN be a permutation and ~ ∈ ZN ∩ [0, Np]N be a vector in
the integral lattice. Suppose that the r.h.s. in (24) is expanded from left to right and
all possible derivation combinations

Sσ,~
def
= (−1)σ ∂j1(wσ(1)) · . . . · ∂

jN (wσ(N))

are obtained; we note that not all vectors ~ ∈ ZN ∩ [0, Np]N can be realized: at least,
|~| ≤ Np. Still, the set J = {~} ⊂ ZN ∩ [0, Np]N does not depend on σ. Assume there
is a summand such that two functions wa and wb acquire equal numbers of derivations
for some combination ~ ∈ J . Then, for the same combination ~ and the transposition
τab, there is the permutation τab ◦ σ such that the order of wa and wb is reversed
and Sσ,~ + Sτab◦σ,~ = 0. Consequently, only the Wronskian remains at ∂p owing to
Eq. (25). �

Theorem 7 is a generalization of a perfectly familiar fact: the commutator of two
vector fields is a vector field. We emphasize that Theorem 7 forbids the naive approach
that combines N vector fields (e.g., symmetries of a PDE) in an attempt to obtain some
vector field again.

Remark 3. Unfortunately, for arbitrary operators (23) of order p = N/2 this mechanism
of compensations does not work. Indeed, suppose that the powers kj ≤ p are arbitrary;
then the sets J ⊂ ZN ∩ [0, Np]N do depend on σ, and generally J(σ) 6= J(τab ◦σ) if two
functions wa and wb are differentiated w.r.t. z equal number of times in a summand
Sσ,~(σ). Of course, we can obtain the Wronskian determinant at some suitable power of
∂, but there can be much more summands, even at ∂ℓ for ℓ ≥ p. The same difficulty
occurs for the lower bound kj ≥ p, when we consider formal differential operators
∇ =

∑
j>p wj(z) · ∂j .
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Nevertheless, for an arbitrary integer p′ ≥ (N − 1)/2 we have

[w1 ∂p′ , . . . , wN ∂p′ ] = W 0,1,...,N−1(w1, . . . , wN) · ∂Np′−N(N−1)/2.

For various pairs (N, p) ∈ N × N, one can deduce many extravagant phenomena. In
[6], the following proposition is proved: for p = 1, vector fields D(Mn) on a smooth
n-dimensional manifold Mn are closed w.r.t N -ary bracket (24) and form the homotopy
N -Lie algebra if N = n2 + 2n − 2.

As a corollary to Proposition 5, we have

Theorem 8. Let N be even; consider the O(C)-module WN/2
def
= spanC〈w(z) ∂N/2〉 of

holomorphic operators of order N/2. Then WN/2 is endowed with the homotopy N-Lie

algebra structure w.r.t. bracket (24).

Nevertheless, the difficulties in complete description of the r.h.s. in (24) do not in-
fluence upon our ability to observe the homotopy N -Lie structure on the associative
algebra of operators (23). As a reformulation to Proposition 5 on page 8 we obtain

Theorem 9. Let N be even, then differential operators (23) of arbitrary orders compose

the homotopy N-Lie algebra w.r.t. bracket (24).

Indeed, the differential operators generate the associative algebra Diff∗(O(C),O(C)).

2.2. On the Wronskian determinants. We start with

Proposition 10 ([5]). Let k and l be positive integers, then the identity

W 0,1,...,k[W 0,1,...,l] = 0

holds.

Remark 4. Actually, a slight modification of Theorem 8 combined with Proposition
6 give a nice and compact proof of Proposition 10 in the case when the numbers k
and l of the arguments are even. In the next section, we generalize Proposition 10 to
the Wronskians D~σ w.r.t. several independent variables x1, . . ., xn, and, in particular,
obtain its proof for arbitrary naturals k and l in the case n = 1.

From Proposition 10 we also obtain

Theorem 11. Let k and l be positive integers, then the relation

[[W 0,1,...,k, W 0,1,...,l]]
RN

= 0

holds.

Corollary 12. The dW -cohomologies of the space of Wronskians are isomorphic to this

space itself: H∗
dW

= spank〈W
0,...,l, l ≥ 1〉, since the differential dW 0,...,k = [[W 0,...,k, ·]]

RN

is trivial.

Now we study the homotopy generalizations of the Witt algebra (the Virasoro algebra
with zero central charge) which is defined by the relations [ai, aj ] = (j − i) ai+j . Taking
into account all our observations on the Wronskians, we set N = 2 and consider the
polynomial generators ai = xi+1, where x ∈ k and i ∈ Z. For N ≥ 2 and the Wronskian
determinant W 0,1,...,N−1, we consider the relations

(26) [ai1 , . . . , aiN ] = Ω(i1, . . . , iN) ai1+···+iN ,
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where the structural constants Ω(i1, . . . , iN) are skew-symmetric w.r.t. their arguments.
Here we use the representation ai = xi+N/2. We claim that the function Ω is the
Vandermonde determinant.

Theorem 13. Let ν1, . . ., νN ∈ k be constants and set ν =
∑N

i=1 νi; then the equality

(27) W 0,1,...,N−1(xν1 , . . . , xνN ) =
∏

1≤i<j≤N

(νj − νi) · x
ν−N(N−1)/2

holds, i.e., the Wronskian determinant of the monomials is a monomial itself and its

coefficient is the Vandermonde determinant.

Proof. Consider the determinant (27): A = det ‖aij xνj−i+1‖. From jth column take
the monomial xνj−N+1 outside the determinant:

A = xν−N(N−1) · det ‖aij xN−i‖;

all rows acquire common degrees in x: deg(any element in ith row) = N − i. From ith
row take this common factor xN−i outside the determinant:

A = xν−N(N−1)/2 · det ‖aij‖,

where the coefficients aij originate from the initial derivations in a very special way: for
any i such that 2 ≤ i ≤ N , we have

a1j = 1 and aij = (νj − i + 2) · ai−1,j for 1 < i ≤ N .

The underlined summand does not depend on j, and hence for any k = N , . . ., 2 the
determinant det ‖aij‖ can be splitted in the sum:

det ‖aij‖ = det ‖a′
kj = νj · ak−1,j; a′

ij = aij if i 6= k‖ +

+ det ‖a′′
kj = (2 − i) · ak−1,j; a′′

ij = aij if i 6= k‖,

where the last determinant is trivial.
Solving the recurrence relation, we obtain

det ‖aij‖ = det ‖νi−1
j ‖ =

∏

1≤k<l≤N

(νl − νk).

This completes the proof. �

Remark 5. We have calculated the structural constants in (26) by using another basis

a′
i = xi such that the resulting degree is not

∑N
k=1 deg a′

k. Nevertheless, the result is
correct since we use the translation invariance of the Vandermonde determinant:

Ω(i1, . . . , iN) = Ω(i1 +
N

2
, . . . , iN +

N

2
),

and therefore all reasonings are preserved.

Now we recall the behaviour of bracket (13) w.r.t. a change of coordinates y = y(x).
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Theorem 14. Let φi(y) be smooth functions for 1 6 i 6 N , i.e., φi is a scalar field of

the conformal weight 0, such that φi is transformed by the rule φi(y) 7→ φi(y(x)) under

a change y = y(x). Then the relation

det

∥∥∥∥
djφi

dxj

∥∥∥∥ i = 1, . . . , N
j = 0, . . . , N − 1

φi = φi(y(x))

=

(
dy

dx

)∆(N)

det

∥∥∥∥
djφi

dyj

∥∥∥∥ φi = φi(y)
y = y(x)

holds, where the conformal weight ∆(N) for the Wronskian determinant of N scalar

fields φi of weight 0 is ∆(N) = N(N − 1)/2.

Proof. Consider a function φi(y(x)) and apply the total derivative Dj
x by using the chain

rule. The result is

djφi

dyj
·

(
dy

dx

)j

+ terms of lower order derivatives
dj′

dyj′
, j′ < j.

These lower order terms differ from the leading terms in Dj′

x φi(y(x)), 0 ≤ j′ < j, by
the factors common for all i and thus they produce no effect since a determinant with
coinciding (or proportional) lines equals zero. From ith row of the Wronskian we extract
(i− 1)th power of dy/dx, their total number being N(N − 1)/2. This is the conformal
weight by definition. �

We see that the Wronskian determinant of N functions is not a function itself: the
objects we are dealing with are the higher order differential operators, and the functions
are their coefficients w.r.t. the basis 〈1, ∂, . . .〉.

Theorem 14 can be extended to the case n ≥ 1: x = (x1, . . ., xn). We also see that
the statement is generally not true if the generalized Wronskian is ∂σ1 ∧ . . . ∧ ∂σN 6=
const ·1 ∧ ∂ ∧ . . . ∧ ∂N−1.

2.3. Applications in the W–geometry. We note that the concept of the homotopy
Lie structures for differential operators (23) has a nice application in the W -geometry.
The Aℓ-W -geometry [9]–[11] is the geometry of complex curves Σ: dimC(Σ) = 1,
dim

C
(Σ) = 1, chirally embedded into the Kähler manifold CPℓ; further on, fA(z) and

f̄ Ā(z̄) are the embedding functions, 0 ≤ A ≤ ℓ and 0 ≤ Ā ≤ ℓ. The compatibility condi-
tions of these embeddings are the Toda equations ([21]), associated with the semisimple
Aℓ-type Lie algebras.

Definition 4 ([10, §3.2]). A general infinitesimal W–transformation δW of such a curve
is a change of the embedding functions fA, f̄ Ā of the form

(28) δW fA(z) =

k∑

j=0

wj(z) ∂jfA(z), δW f̄ Ā(z̄) =

k∑

j=0

w̄j(z̄) ∂̄j f̄ Ā(z̄),

where wj ∈ O(C) and w̄jare holomorphic and anti-holomorphic functions, respectively.

We see that a W -transformation is uniquely defined by the higher order differential
operator

∑
j wj(z) · ∂j ∈ Diff∗(O(C),O(C)). So, by using Theorem 9 we conclude that

the higher-order W -transformations compose the homotopy N -Lie algebras for even
natural Ns.
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3. The Wronskians in multidimensions: n ≥ 1

In this section, we generalize the concept of the Wronskian determinants to the mul-
tidimensional case of the base x ∈ R

n; here we assume k = R. Further on, we consider
the kth order jets Jk(n, 1) over the bundle π : Rn × R → Rn, where the base is the
Euclidean space of dimension n ≥ 1 and the algebra A is the associative commutative
algebra C∞(Rn) of smooth functions.

In order to construct a natural n-dimensional base generalization of the Wronskians,
we pass to the geometrical standpoint ([3]) and make an experimental observation first.

Let F(π) be the algebra of smooth functions C∞(J∞(π)) and consider the F(π)-
module κ(π) of evolutionary vector fields2

Зa =
∑

j,σ Dσ(aj) · ∂/∂uj
σ, where aj ∈ F(π).

To each Cartan N -form ω ∈ CNΛ(π) we assign the operator ∇ω ∈ CDiffalt
(N)(κ(π), F(π))

by the rule

(29) ∇ω(a1, . . . , aN) = ЗaN
(. . . (Зa1 ω) . . .),

where ai ∈ κ(π).

Proposition 15 ([3, Chapter 5]). Correspondence (29) is the isomorphism of the F(π)-
modules :

CNΛ(π) ≃ CDiffalt
(N)(κ(π),F(π)).

Further on, we use the notation ω(Зa1 , . . . ,ЗaN
)

def
= ЗaN

(. . . (Зa1 ω) . . .), where
ω ∈ CNΛ(π) and ai ∈ κ(π).

Remark 6 ([18]). Consider the infinite jets J∞(π) over the bundle π : R × R → R.
Let x ∈ R be the independent base variable, u be the dependent fiber variable, Dx

be the total derivative w.r.t. x, and u(k) ≡ Dk
x u be the coordinates in J∞(π) for any

k ≥ 0. By dC we denote the Cartan differential, dC : C∞(J∞(π)) → CΛ(J∞(π)), that
maps u(k) 7→ du(k) − Dxu

(k) dx. The Wronskian determinants (13) can be interpreted
as action of the N -forms dCu∧ . . .∧ dCu

(N−1) ∈ CΛ∗(JN−1(π)) ⊂ CΛ∗(J∞(π)) upon the
evolutionary vector fields Зaj

≡
∑∞

k=0 Dk
x(aj) ∂/∂u(k):

[a1, a2] = du ∧ d(u′) (Зa1 ,Зa2),

[a1, a2, a3] = du ∧ d(u′) ∧ d(u′′) (Зa1 ,Зa2 ,Зa3), etc.

for any aj ∈ C∞(R). We emphasize that aj ∈ C∞(R) ⊂ κ(π), i.e., we restrict ourselves
to a submodule of κ(π) generated by functions on the base M .

Remark 7. Consider the ternary bracket � ∈ Hom(
∧3 C∞(R2), C∞(R2)):

�(a1 ∧ a2 ∧ a3) = dCu ∧ dCux ∧ dCuy(Зa1 ,Зa2 ,Зa3) =

∣∣∣∣∣∣

a1 a2 a3

Dx(a1) Dx(a2) Dx(a3)
Dy(a1) Dy(a2) Dy(a3)

∣∣∣∣∣∣
.

For the bracket �, the homotopy ternary Jacobi identity �[�] = 0 of the form (5)
holds. We prove this fact by direct calculations using the Jet software [22].

2To denote evolutionary vector fields, we use the Cyrillic letter З, which is pronounced like “e” in
“ten”.
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Proposition 16 ([3]). The dimension of the vertical part Jk(n, 1)/Rn of the jet space

Jk(n, 1) is

(30) dim
Jk(n, 1)

Rn
= dim Jk(n, 1) − n =

k∑

i=0

(
n + i − 1

n − 1

)
=

(
n + k

n

)
.

We also note that this dimension N ≡
(

n+k
n

)
is such that the inequality

dim Jk1+k2(n, 1) − n − 1 ≥ dim Jk1(n, 1) + dim Jk2(n, 1) − 2(n + 1)

is valid for any k1 and k2; in what follows, we need to substract the dimension dim J0(n, 1) =
n + 1 in order to deal with non-trivial multiindexes σ such that |σ| > 0.

Choose arbitrary positive integers n and k; then N =
(

n+k
n

)
is the dimension dim(Jk(n,

1)/R
n). Let A = C∞(Rn) be the algebra of smooth functions aj ∈ A, 1 ≤ j ≤ N . Now

we define the N -linear skew-symmetric bracket �k ∈ Hom(
∧N A,A): we put

(31) �k(a1, . . . , aN) =

k∧

l=0

(∧

|σ|=l

dC · Dσu
)

(Зa1 , . . . ,ЗaN
).

In coordinates, this bracket is �k(a1, . . . , aN) = det ‖Dσi
(aj)‖, where σi = (σi

1, . . . , σ
i
n)

runs through all multi-indexes such that uσi
is a coordinate on the kth jet space Jk(n, 1)

of the fibre bundle R × Rn → R.
We claim that the N -linear skew-symmetric bracket �k ∈ Hom(

∧N A,A) defined in
(31) satisfies the homotopy N -Lie Jacobi identity

(32) �k[�k] = 0.

To prove that, we establish a substantially more general

Theorem 17. Let Nin =
(

n+kin

n

)
and Nout =

(
n+kout

n

)
be the dimensions given by Eq. (30)

for some natural kin and kout; by �in and �out denote the multilinear skew–symmetric

brackets defined in Eq. (31). Then the equality

�kout [�kin
] = 0

holds.

Proof. Without loss of generality we assume that kin ≥ kout, otherwise one has to
transpose the subscripts ’in’ and ’out’ in Eq. (33).

In contrast with the reasoning in Section 2.2, we deal with D~σ = Dσ1 ∧ . . . ∧ DσN
,

where σj is a multiindex (♯x1, . . . , ♯xn) ∈ Zn
+ for any j, 1 ≤ j ≤ N =

(
n+k

n

)
. Define the

norm |D~σ| = |~σ| =
∑N

j=1 |σj |; we see that |�kout[�kin
]| = |�kin

| + |�kout |.

Now we note that the non-trivial skew-symmetric (Nin + Nout − 1)-linear bracket

�min ∈ Hom(
∧Nin+Nout−1 A,A) with the minimal norm is

(33) �min = �kin
∧
( ∑

̄∈ΛNout−1(Jkin+kout(n,1)/Jkin (n,1))

const(̄) · Dσ̄

)
,

where const(̄) ∈ R are some constant coefficients.
We claim that |�min | > |�kin

+ �kout|, and thence �kout [�kin
] = 0. Indeed, consider

the r.h.s. in (33) and note that |∆ ∧ ∇| = |∆| + |∇|, see page 3 for definition of the
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wedge product ∧ in this case. The set of Nout different derivatives in �kout admits the
canonical splitting:

�kout = D~τout

= 1 ∧ Dτout
2

∧ . . . ∧ Dτout
Nout︸ ︷︷ ︸

Nout − 1 factors

,

where ~τ out contains all multiindexes in Jkout(n, 1), and those underbraced derivatives
are in bijective correspondence with Nout − 1 different derivatives within any summand
in the second wedge factor of (33) (there is the correspondence owing to the equal
numbers of elements). Still,

1 ≤ |Dτout
i

| = |τ out
i | ≤ kout < kin + 1 ≤ |σ̄,i| = |Dσ̄,i| ≤ kin + kout ∀i 6= 1, ∀̄.

Indeed, if a multiindex σ̄,i is such that uσ̄,i
is a coordinate on the jet space’s part

Jkin+kout(n, 1)/Jkin(n, 1) with the higher order derivatives only, then σ̄,i is longer than
any multiindex τ out

i such that uτout
i

is a coordinate on Jkout(n, 1). Consequently, the
norm of the second wedge factor in the r.h.s. of (33) is strictly greater than |�kout|, and
thence �kout [�kin

] is trivial. This completes the proof. �

Remark 8. The parity of the number N =
(

n+k
n

)
of arguments in (31) is arbitrary and

hence the reasonings of Theorem 17 exceed case (24) of the associative algebras; in
particular, for n = 1 we get Proposition 10, as we claimed in Remark 4.

We give an example of the homotopy 3-Lie algebra of polynomials in two variables:

Example 5. The space of polynomials spank〈1, x, y, xy〉 ⊂ k2[x, y] endowed with the
ternary bracket 1∧Dx ∧Dy acquires a homotopy 3-Lie algebra structure. The commu-
tation relations in this algebra are

[1, x, y] = 1, [1, x, xy] = x, [1, y, xy] = −y, and [x, y, xy] = −xy,

and we see that the structural constants are such that the generators x and y are mixed.

In this section, we have realized the continualization scheme: the N -ary bracket
W 0,1,...,N−1 is defined on the sequence of k-algebras

kN [x] →֒ k[[x]] →֒

[
k[[x1, . . . , xn]]

{
∑

α cα · xα | α ∈ k, cα ∈ k}.

The sets of indexes are finite, cardinal, cardinal w.r.t. any of n generators, and contin-
uous, respectively, for any possible N .

We also note that the definition of the Koszul ∂∆-cohomologies is invariant w.r.t. the
number of derivations ∂i : A → A, i = 1, . . . , n, so that the cohomological constructions
are preserved for the Wronskian determinant in (31) if n > 1. These concepts allow
further, purely algebraic studies on the topic. Also, we note that there is a famous
mechanism that provides the associative algebra structures, namely, the Yang-Baxter
equation ([14]) and the WDVV equation (see [12] and references therein).
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